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Static fatigue of glass: functional dependence 
of failure time on stress 

G. S. F R I E D M A N ,  K. C U S H M A N ,  R. H. D O R E M U S  
Rensselaer Polytechnic Institute, Troy, New York 12181, USA 

Static fatigue of as-received Pyrex borosilicate glass was examined over a wide range of 
stress and failure time under constant temperature, relative humidity, and surface treat- 
ment. It was necessary to calculate the load on the sample from strain guage measure- 
ments. The mean log failure time was related to the reciprocal of stress or the reciprocal 
of stress squared; power law and direct proport ional i ty to stress gave poorer fits. 

1. Introduction 
Prediction of the life of brittle materials is impor- 
tant in many applications, especially when the 
parts are of high value or are inaccessible, as for 
glass fibres used as optical wave guides. Life pre- 
diction beyond experimental times requires 
knowledge of the functional dependence of failure 
time on the applied stress. This functional depen- 
dence is often assumed to be a power law, but 
there has been no demonstration that this depen- 
dence is correct for extrapolation to long times. 

The goal of this work was to determine the 
functional dependence of failure time on stress for 
glass. Delayed failure under a static load (static 
fatigue) was chosen as the method most closely 
related to long-term failure of glass parts in practi- 
cal applications. It is possible to measure strengths 
as a function of loading rates as a measure of 
fatigue, but it is difficult to make such measure- 
ments over a wide range of failure stresses. 

We chose Pyrex borosilicate glass (Coming 
7740) for this study because it is readily available 
as rods in large quantities, and has not been 
studied as intensively as soda-lime and silica 
glasses. Large numbers of samples are needed 
because of the spread in failure times even when 
all conditions are held constant. We tested more 
than 1200 similar samples in the same relative 
humidity. 

During this work several different types of 
apparatus were used to apply a static load to the 
glass rods in four-point bending. The load at the 
bending jig was calculated from the weight hung 
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onto a lever arm, and the arm ratio. Statistically 
significant differences of failure times were found 
for different designs. When the stress was calcu- 
lated from direct measurements of strain with 
strain guages, a different stress from that calcu- 
lated from the lever arm was found, and results 
from the various designs did not suffer significantly. 

Several different relationships between failure 
time, t, and applied stress, S, in brittle materials 
have been proposed; they are: 

linear [ 1 ], 

loglo t = a - - b  (~-~N) , (1) 

power law [2], 

loglo t = c - - n  log (S-~) , (2) 

inverse exponential [3 -5] ,  

t = d + g ( ~ )  , (3) loglo 

and inverse exponential squared [6], 

lOglot = h + p  - -  . (4) 

In these equations SN is the failure stress at liquid 
nitrogen temperature (~ 196 ~ C) and a, b, c, d, g, 
h, n and p are constants. These equations were 
tested directly by least-squares fits, by examining 
the variation of spread in loglo failure times, and 
by their ability to predict long-time tests. 
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2. Experimental methods 
Glass rods 3 mm in diameter and 60 mm long were 
cut from as-received rods of Coming 7740 Pyrex 
borosilicate glass, all from the same shipment. The 
rods were stressed in four-point jigs with either 
knife-edges or rods. Tests at liquid nitrogen tem- 
perature were carried out in an Instron testing 
machine. In the static fatigue tests the jig was 
attached to a lever arm with a metal cable. Dif- 
ferent kinds of multiple-lever systems were used. 
The amplification factor was calculated by simple 
mechanics, and a correction was made for the 
weights of the lever arm portions [7]. The maxi- 
mum stress, S, between the linear load points was 
calculated from the simple bending formula: 

8PL 
S - n D  3 , (5) 

where P is the load on the jig, L is the distance 
between the inner and outer points (19 mm) and 
D is the diameter of the rod sample (3 ram). 

Mean fatigue times at the same nominal stress 
in different instruments were up to two orders of 
magnitude different as shown in Fig. 1, and the 
difference was highly significant statistically. This 
difference occurred because the calculated load 
at the jig was not quite correct. To find the correct 
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Figure 1 Mean log10 failure times as a function of reduced 
stress SIS N for two different apparatus designs. 

stress two strain gauges were mounted 180 ~ apart 
on a steel bar 3.2 x 3.2 >< 64 mm in dimension and 
wired in the half-bridge arrangement shown in 
Fig. 2. This arrangement was read on a Vishay/ 
Ellis-10 strain gauge indicator. The force, P, w a s  

calculated from the equation 

eEwh 2 
P = 6L (6) 

where e is the strain, E is Young's modulus (210 
GPa for the steel used), w is the width of the beam, 
h is its length, and L is the distance between the 
outer and inner load points. 

The time of loading was measured with micro- 
switches on the lever arms, wired to digital clocks. 
The docks started when the load was applied, and 
when the sample broke, the lever arm hit the 
switch, stopping the clock. 

The lever arms were entirely enclosed in plexi- 
glass boxes and the relative humidity was con- 
trolled at 60%, as read from wet and dry bulb 
thermometers, by bubbling air through a saturated 
lithium chloride solution. 

Glass and other brittle materials are often 
abraded before strength or fatigue testing to give 
more uniform strengths, even though mean strength 
is reduced. However, we found that abrading glass 
can also give strength distributions that fit distri- 
bution functions such as the normal or Weibull 
less well than as-received glass [8]. It is also diffi- 
cult to abrade samples uniformly, and abrasion of 
a large number of samples takes much time. There- 
fore we chose to use the glass rods as-received, 
without any treatment. The mean strength and 
coefficient of variation (standard deviation divided 
by the mean) at -- 196 ~ C did not change signifi- 
cantly for samples tested throughout this work. 

3. Statistical treatment of data 
Strengths of brittle materials for samples that are 
nominally identical and are tested under identical 
conditions show considerable spread. These 
strength distributions can be described by various 
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Figure 2 Wiring of strain gauges. 
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distribution functions. Strengths are often distri- 
buted symmetrically, so they can be described by 
a normal (Gaussian) distribution, 

e = e x p  , ( 7 )  

where P is the probability of finding a sample of 
strength (failure stress) S, Sm is the strength of 
greatest probability (Pin = 1/dx/~) and d is a 
measure of the spread o f  the distribution called 
the standard deviation and is equal to the root 
mean square of deviations from the mean strength. 
The integral of Equation 7 gives the fraction, F, 
of samples that break below the stress, S, i.e., 

F = ~ {1 + erf [(S--Sm)/X/~d] }, (8) 

where erf, the error function, is defined by 

erf(X) = ~ exp (-- k 2) dk. (9) 

Recently, another distribution function called 
the Weibull distribution has become quite popular 
in describing strength distributions: 

F = 1 - - exp  [--(S/So)m], (10) 

where So is a scaling factor and m is a measure of 
the spread of the distribution; the smaller rn is, 
the broader the distribution. For a value ofm larger 
than about three, the Weibull distribution is nearly 
symmetrical and closely resembles the normal 
distribution. A convenient way to examine the fit 
of the strength data to a Weibull distribution and 
to calculate m is to transform Equation 10 to 

log [-- ln(1--1v)]  = m log S -- m log So . (11) 

A least-squares fit of the related equation gives 
values of m and So. 

A measure of fit to a function is the sum of 
squares 

1 ~i% (Si--~i)  2 (12) 
~i% (S~ - 5 )  2 

In this equation Si is a measured value, S is the 
mean of measured values, and Si is the predicted 
value of S calculated from a certain function and 
its estimated parameters, corresponding to the 
rank position of Si (value ofF) .  For a straight line 
function Equation 12 is equal to R 2, which is 
usually the correlation coefficient. The parameters 
for a straight line are the slope and intercept. For 
a normal distribution the parameters are the mean, 
Sm, and standard deviation, d, and Si can be calcu- 
lated from Equation 8 for each F. If  the fit is per- 
fect, R 2 = 1. If  the sum of squares is greater than 
about 0.95, the fit is quite good; between 0.9 and 
0.95 reasonably good, and below 0.9 successively 
poorer. 

It is found for fatigue data that log10 failure 
times fit the distribution functions much better 
than failure times directly, so for fatigue data 
log10 t is used in place of  S in Equations 7 and 8 
including loglo t for Sm. 

4. Experimental results 
There is no fatigue a t - -  196 ~ C, so fracture strengths 
at this temperature give a measure of the flaw 
intensity and distribution undisturbed by fatigue 
effects. A total of 335 samples were tested at 
- -196~ including samples tested by Malitoris 
[9]. These samples were broken at different strain 
rates; a sum-of-ranks test [10] showed no statisti- 
cally significant difference between samples tested 
at different strain rates and at different times 
throughout the work. The mean strength for the 
335 samples was 237 MPa with a coefficient 
of variation of 23.9%. 

Samples were annealed at 550 ~ C for 15 and 30 
minutes and tested at - -196 ~ C; the results are 
summarized in Table I. The annealing temperature 
of Coming 7740 glass is about 555 ~ C, at which 
temperature nearly all residual stress is removed 
in about 15 min. Annealing of stress, even at 
temperatures much below the annealing tempera- 
ture, is non-linear with most of the stress anneal- 
ing rapidly [11 ]. Thus it appears that there was 

TABLE I Strength of as-received and annealed Pyrex borosilicate glass at -- 196 ~ C 

Condition No. of samples Mean failure stresses Coefficient of 
(MPa) [ksi] variation (%) 

Weibull distribution 
from Equation 10 

Slope R 2 

As-received 335 236.7 [34.3] 23.9 
15 min anneal 175 223.8 [32.4] 26.1 
30 min anneal 123 212.4 [30.8] 29.9 

4.99 
4.15 
4.40 

0.988 
0.929 
0.972 
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TABLE II Static fatigue of Pyrex borosilicate glass 

Reduced stress, No. of samples log,o t~ 
SIS N (tf in see) 

Standard deviation, d Sum of squares measure of fit to 
normal distribution 

0.329 5 5.317 
0.337 13 4.811 
0.352 31 4.261 
0.371 53 3.744 
0.389 48 3.573 
0.394 65 3.214 
0.408 50 2.374 
0.425 44 1.740 
0.435 94 2.373 
0.452 94 1.898 
0.466 50 1.829 
0.471 50 1.731 
0.489 54 2.182 
0.504 21 0.924 
0.531 58 1.102 
0.542 57 1.296 
0.568 59 0.887 
0.583 99 1.040 
0.608 75 0.447 
0.647 50 0.289 
0.673 50 0.390 
0.728 50 0.530 

1.179 0.903 
1.177 0.950 
1.106 0.970 
1.484 0.959 
1.540 0.945 
1.634 0.964 
1.300 O.986 
1.253 0.970 
1.496 0.967 
1.028 0.982 
1.337 0.980 
1.065 0.964 
1.239 0.961 
0.863 0.950 
0.902 0.969 
0.994 0.967 
0.995 0.956 
0.845 0.980 
0.882 0.941 
0.783 0.869 
0.715 0.911 
0.629 0.931 

little or no effect of residual stress on the strength 
of  the samples listed in Table I, and that  the 
decrease in strength probably resulted from some 
other factor, possible an increase in the degree of 
phase separation. Properties of  Pyrex borosilicate 
glass such as viscosity [12] and chemical durabil i ty 
[13] change substantially during heating for as 
little as an hour at 600 ~ C, as a result of  phase 
separation. Therefore it seemed unnecessary and 
perhaps even damaging to anneal the specimens, so 
they were tested in static fatigue without  annealing. 

The results of  mean loglo failure time as a 
function of  reduced stress are summarized in 
Table II. The stresses were calculated from the 
strain gauge measurements,  as described in the 
experimental  methods section, and the mean SN 
value was 237 MPa (Table I). At  each stress the 
number of  samples tested, the standard deviation 
of  log~o t~ values, and the sum of  squares measure of  
fit (Equation 11) are given in Table II. In most sets 
of  data the measure to fit the normal distribution 
is quite good ( <  0.95), justifying the use o f  loglo 
failure time as the dependent  variable. Examples 
of  a normal plot (on probabil i ty paper, Equation 
8) and a Weibull plot are given in Figs 3 and 4. 

In four of  the data sets at the highest stresses 
there were an appreciable number of  short fracture 
times (less than two seconds) that were difficult 
to measure reliably. An indication of  this problem 

is the somewhat lower measure of  fit to the normal 

distribution. In order to calculate a more reliable 
loglo t value at these stresses the longer failure 
times were plot ted on probabil i ty paper, and the 
value of  log10 t at 50% of  samples failed was taken 
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Figure 3 Fraction of samples, F, having a log10 t less than 
the abscissa value (probability plot) for S/SN= 0.425. 
The measure of fit = 0370. 
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Figure 4 Weibull plot for S/SN = 0.425. R 2 = 0.978. 

0.8 

as the mean value. The results are given in Table 
III. These values are all somewhat lower than those 
in Table II; however, substitution of  the revised 
values for the original ones did not change 
appreciably the fits or parameters described below. 

The means of  log10 tf values were tested for their 
functional dependence on stress. The mean of a 
sample of  experimental measurements taken from 
a large population (for example, the loglo failure 
times for a series of samples held at a particular 
stress) is the "best" statistical measure of  the 
"middle" of  the distribution. It is the expected 
value, and is unbiased and consistent (see statistical 
books such as i.e. [14] and [15],  for further 
discussion of  these matters). The mean of  the 
sample is therefore the best statistical estimate of 
the mean of  the ficticious population of  all log10 t 
(the "true" mean). The distribution of the sample 
means has a standard deviation o/V~, where o is 
the standard deviation of  the population and n the 
number of  measurements in the sample. The stan- 
dard deviation, d, of  the sample is the best measure 
of  the standard deviation of  the population, so 
that d/x/'n is a measure of  the reliability of  the 
mean value calculated for the sample. 

In analyzing static fatigue data some experi- 
menters have thought that reliance on the mean of  
the log10 t values at a particular stress "makes inef- 
ficient use of  the data since only the median Q 
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TABLE III  Revised values of log~0 t 

SIS N 0.728 0.673 0.647 0.608 
loglo t 0.30 0.23 0.20 0.26 

values are used", giving large uncertainties in calcu- 
lated fatigue parameters [16],  or that "new" 
information can be found by treating the data 
differently [17]. The discussion of the last para- 
graph shows that these ideas are based on a mis- 
conception. The mean value makes the most 
efficient use of  the data, and no "new" information 
can be found by treating the data differently. In 
fact these various procedures [ 1 6 - 1 8 ] ,  including 
the use of  a "homologous" stress ratio, requires 
explicit or implicit assumptions about the func- 
tional dependence or failure time on stress and on 
the relation between the distribution of  inert 
strengths and the distribution of  loglo t values. 
Introduction of  these assumptions causes a biasing 
or weighting of  the experimental values, leading to 
an apparently different functional dependence of 
loglo t on stress than found from the means. Thus 
these procedures are not only unnecessary but 
they also distort the data. 

Another misunderstanding is that the spread 
(standard deviation) of  loglo t values at a particular 
stress is a measure of  the reliability of the mean 
value. The true measure of  the reliability of  the 
mean is d/x/-n, the standard deviation of the sample 
divided by the square root of  the-number  of  
measurements; thus the value of  the mean becomes 
more reliable (has a high probability of  being close 
to the population mean) as more measurements 
are taken, as it must. Therefore the mean values 
are the correct ones to use for finding the func- 
tional dependence of  failure time on stress. 

The mean loglo t values were fitted to each of  
Equations 1 to 4 by linear regression (least squares) 
analysis. The results are summarized in Table IV. 
The fits were first made by using the loglo t and 
S/SN values in Table II directly. However, because 
there are different numbers of  samples at each of 
the stresses, a weighted least squares analysis is 
more appropriate. In this method each logm t value 
is multiplied by a weighting factor, wi, which is 
proportional to x/n, where n is the number of  
samples at a particular stress; x/n is used because 
it is a measure of  the reliability of  the log10 t (see 
above). Equations for the weighted least squares 
calculations [20] are given in the Appendix. The 
calculations of  fits were done on a computer; 
programs for the calculations are given in [7]. 



TABLE IV Fit of loglo tf as a function of SIS N for Equations 1 to 4 

log10 tf Equation Least squares 

Slope Intercept R 2 

Weighted average least squares 

Slope Intercept R 2 

S/SN 1 11.78 7.82 
log10 (SIS N) 2 13.97 -- 2.43 
SN/S 3 2.94 -- 4.26 
(SN/S) 2 4 0.673 -- 1.20 

0.802 10.79 7.21 0.805 
0.873 12.90 - 2.15 0.869 
0.925 2.78 -3 .95  0.915 
0.955 0.655 - 1.12 0.944 

The results in Table IV show that there is not 
much difference between the ordinary and weighted 
regression parameters. Equation 4 (squared recipri- 
cal) fits the data best, followed by Equation 3 
(reciprocal stress, Equation 2 (power law) and 
Equation 1 (proportional to stress). The fit to 
Equation 1 is quite poor, to Equation 2 rather 
poor, to Equation 3 reasonably good, and to 
Equation 4 quite good. Plots of  the fits are given 
in Figs 5 to 8, comparing the mean log10 t values 
with the regression lines. The relative goodness of  
fit which improves in the sequence Equations 1, 
2, 3 and 4, is apparent from the graphs. 

Another way to judge the applicability of  an 
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Figure 5 Fit of Equation 1 to mean loglo failure times of 
Pyrex borosilicate glass at different stresses. 

equation to a set of  data is to examine the resi- 
duals (see [20], Chapter 3). The residuals for the 
fits of Figs 5 to 8 are the differences between the 
measured values of  log10 t and the values of  loglo t 
calculated from the regression parameters (Table 
IV); the residuals can be estimated from the fig- 
ures by the difference in loglo t values between the 
points and the lines in the figures. A systematic 
variation of  residuals with either the independent 
or dependent variable shows that the equation 
chosen for fitting is inadequate. The residuals from 
Figs 5 and 6 (Equations 1 and 2) clearly show a 
systematic deviation in that the residuals are 
almost all positive at the higher and lower stresses 
or toglo t values and negative in between. For Figs 
7 and 8 (Equations 3 and 4) there is perhaps a 
small tendency of  this sort, but it is much less 
marked than for the other two figures. 
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Figure 6 Fit of Equation 2 to mean log10 failure times of 
Pyrex borosilieate glass at different stresses. 
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Figure 7 Fit o f  Equation 3 to mean log~o failure times of  
Pyrex borosilicate glass at different stresses. 

The variation of the spread (standard deviation) 
of loglo t values with stresses is a sensitive measure 
of  the functional dependence of failure time on 
stress [5]. The applied stress S can be considered 
constant compared to the spread in inert strengths 
(SN values) for different specimens. Thus the 
differential of S/SN is: 

d(S/SN) = -- (S dSN)/S . (13) 

I f  the differential of the log10 t is considered to 
equal the standard deviation of loglo t (designated 
by 6 loglo t) and dSN/S N is the coefficient of varia- 
tion (standard deviation divided by the mean) of 
the inert strength (6SN)/SN, then the following 
relations are found from Equations 1 to 4: 

S 6S N (14)  
8 log~ot = bs-- ~ 

S---N ' 

6SN 
61oglot  = n - , (15) 

SN 

SN 8SN 
loglot = g S SN ' (16) 

and / ~ \  

6 loglo/ = 2 p | - ~ - I  6SN (17) 
k s /  SN 

These equations show that for the direct depen- 
dence of Equation 1 the spread in log~o t values 
should decrease as the stress decreases, that for 
the power law o f  Equation 2 the spread in loglo t 
should remain constant with changes in stress, and 
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Figure 8 Fit of Equation 4 to mean loglo failure times of 
Pyrex borosilicate glass at different stresses. 

for the inverse exponentials of Equations 3 and 4 
the spread in log10 t should increase as the stress 
decreases. In these equations SN is the mean value 
of strengths a t - -  196 ~ C. 

For every set of static fatigue data on glass that 
are reliable enough, the spread in loglo t values 
increases as the stress decreases [5, 16, 17]. The 
same trend is evident in Table II for the present 
data. Therefore this test also favours Equations 3 
and 4. The product g(~SN/SN) calculated from a 
regression analysis of  the 8 loglo t values and 
Equation 16 is about 0.53, whereas the value of 
this product from the fit to Equation 3 and the 
- -196~  fracture spread is 0.70. Similarly, the 
product 2p(~SN/SN) calculated from the 6 loglo t 
values is about 0.24 and the value calculated from 
the fit to Equation 4 is 0.32. These comparisons 
show that the standard deviations in log~o t are 
consistent with either Equations 3 and 4, and 
cannot distinguish which equations fit best. 

The predictions of sample life from Equations 
1 to 4 were tested with samples at the low stress 
of S/SN = 0.253. Twenty samples were started 



at this stress, with the following results: samples 
failed at 5, 9, 17, 55, 77 and 467 days; after 750 
days of stressing seven samples were unbroken; 
and seven samples were removed from the test 
after 355 days. At first the samples removed from 
the test are not considered. Of the remaining 
thirteen samples, six failed at the times given 
above. These results can be plotted on probability 
paper, where they show a reasonable straight line 
with a mean loglo failure time of 7.8 (time in see) or 
about 730 days and a standard deviation in log10 t 
of about 1.65. The samples removed from test at 
3 55 days are consistent with these values. Predicted 
mean failure times from Equations 1 to 4 and the 
parameters in Table IV are given in Table V. The 
long-time failure tests are closest to the prediction 
of Equation 3. Of course this test involves only a 
small number of samples, so the comparison with 
expected failure times and standard deviation is 
only rough, and perhaps the comparison should be 
limited to a test of consistency. The predictions of 
Equations I and 2 are deafly inconsistent with the 
long-time results, giving expected life of about three 
and two orders of magnitude respectively, less than 
found experimentally. 

5. Discussion 
The present results show that either Equations 3 
or 4 should be used for life prediction of glass 
parts in preference to Equations 1 and 2. More 
data and analysis are needed to decide definitely 
between these two relations. More parameters in 
these equations could give better fits to some of 
the data but such a step does not seem justified at 
present. The power law of Equation 2 can be used 
to extrapolate static fatigue data for only a short 
time beyond experimental times, in spite of the 
large number of calculations and interpretations of 
fatigue data in terms of this equation. 

Hillig and Charles developed a theory of static 
fatigue of glass as resulting from the stress-enhanced 
rate of reaction of water with the silicate network 
of the glass [1]. The functional dependence of 
failure time on stress. Hillig and Charles assumed 
that the rate of reaction, v, of water with glass 

TABLE V Predicted failure times for SIS N = 0.253 

f(S/SN) Equation Predicted log~0 tf Days to fail 

S/SN 1 4.84 0.80 
log10 (S/S N) 2 5.90 9.20 
SN/S 3 7.36 265 
(SN/S) 2 4 9.31 23700 

depended dn the stress, a, at the crack tip by the 
equation 

v = Vo exp/50, (18) 

Where Vo and /5 are constants, and found the 
relation of Equation 1 between failure time and 
stress. Their treatment can be modified [21] by 
using the equations 

v = a o  n, (19) 

and 

v = v= exp (-- a/o), (20) 

to obtain Equations 2 and 3, and the relationship 

v = vo~ e x p ( - - a ' / a  2) (2I) 

gives Equation 4. The present results suggest that 
either Equation 20 or 21 is the correct one. Both 
of these equations have theoretical support. 
Taylor [3] derived Equation 19 from a simple 
bond-stretching model of the influence of stress 
of a chemical reaction, and Gilman and .Tong 
[22] found this equation from a tunneling model 
of fracture. Elliot [6] derived Equation 20 from 
an analogy of diffusion in oxide films. Determina- 
tion of the exact mechanism by which water leads 
to fatigue in glass requires further study. 
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Appendix:Weighted least squares 
Consider a set of independent variables X/ (for 
example, stresses) and a set of corresponding 
dependent measured variables Yi (for example 
mean failure times). Assume these variables are 
linearly related and calculate estimates of the 
parameters A and B in the linear relationship 

t = A + B X  (A1) 

where I7" is the predicted value for a given X. The 
least-squares equations for A and B are 

n~  X~Y i - -  ~, X i  )2 Yi 
B = nZ, X~ --  (Z, Xi)  2 (a2) 

and 

~ Y~ --  B 2 X~ 
A = , ( A 3 )  

n 
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where the sums are f rom i = 1 to i = n  and n is 

the to ta l  number  o f  values o f  Yi. I f  each value o f  

Yi has a weight  w i, the equat ions  for B and A 

become  [20] 

~2 X~Yi F~ wi -- ~ w~Xi -- ~ wiYi 

B = ~, wi E X ~  -- ~, Xi  F~ wiXi (A4) 

X~ w i Y  i -- ~, X iY i  ~ Xi 
A = ~ w~ ~ X 2 -  Y, Xi  F~ wiXi (A5) 

These equat ions revert to A2 and A3 i f  all the  w i 

factors are the same. The weighted regression coef- 

f icient  R 2 is: 

10. R. LANGLEY, "Practical Statistics" (Dover, New 
York, 1971) pp. 166-178. 

11. G.W. MOREY, "The Properties of Glass" 2nd edn 
(Reinhold, New York, 1954) Chapt. VI, pp. 166-  
190. 

12. J. H. SIMMONS, S. A. MILLS and A. NAPOLI- 
TANO, J. Amer. Get. Soc., 57(3) (1974) 109, 

13. M. TOMAZAWA and T. TAKAMORI, ibid. 60(7-8) 
(1977) 301. 

14. G. K. BHATTACHARYA and R. A. JOHNSON, 
"Statistical Concepts and Methods" (Wiley Inter- 
science, New York, 1977) p. 210ff. 

15. K.V. BURY,"Statistica!ModelsinApplied Science", 
(Wiley Interscience, New York, 1975) p. 86. 

R 2 
[Y, w i ~2 w iX iY  i -- ~ wiYi  ~ wiXi] 2 

(A6) 
[~ wi ~ wiX~ - (~ wiX3 2 ] [~ wi ~ w i ~  - (~ wiY~) 2 ]" 
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